Heart Rate monitor

This project by the undergraduate students of Cornell University allows you to measure your heart rate along with blood pressure through the use of optical based sensors. Their intention is to gather data for large-scale analysis for the automatic prediction of heart disease. The heart of the project is the ATMEGA 1284p, which is used to control the infrared LEDs that will transmit light which is reflected back to the light to frequency sensors.


The microcontroller takes in the signals that reflect pulsatile measurements, and will digitally process these signals into pulse measurements, and send the data through either USB or bluetooth to a PC. The PC will have a GUI that graphically shows the two pulses and the blood pressure and pulse. The mouse unit contains the mouse controller, a mega1284P microcontroller, an ultrasonic sound transmitter, three ultrasonic sound receivers and an XBEE wireless transceiver. The base station contains a mega32 microcontroller and an XBEE wireless transceiver. A GUI has also been created to observe the data without any use of additional tools. The complete mathematics along with the schematics of the project can be found on the project website.


Device to measure sports performance

This device named as Fight Coach is sensor system that can be inserted into sports gear which will permit fighters to manage evaluate their performance. By tracking the athlete’s hand movement and displaying it in real-time, Fight Coach can help athletes optimize their training. However, the main advantage of this device is that it’s small enough to fit into their equipment without causing much trouble or comfort problem to the athlete. Moreover, it has USB rechargeable battery system along with a wireless system.


The ATMEGA32U4 microcontroller does the major work which is also connected to a RN-41 Bluetooth module for wireless functionality. Motion data, generated by the accelerometer and gyroscope, is obtained by the MCU via i2c, and the MCU then transmits that data to a Bluetooth module via UART, which in turn gets displayed and processed on a matlab terminal. It also has the ability to display athlete’s damage output along with his defensive performance in real-time. If the athlete wishes he can also log the data generated for further analysis in future. If you are interested to learn more about its functionality, the documentation of the project is available on the project website.


Visualize music in 3D

This project allows you to generate 3D effects on a screen consisting of a mixed number of different LED’s. The effect generated are based on the beats and the tempo of the music. To generate the beats pattern, a MATLAB program is used to generate the hex file which is burnt into the controller. The controller attached to a 10×10 screen displays the required pattern. This project is very cheap to build and you could possibly build it without even going to the market as it utilizes two sets of controller, some LED’s, a motor and decoder.


Different microcontroller are used to control the motor and the LED structure possibly due to pin shortage and high current requirement by the motor. The effect produced by the system is continuous as it also utilizes concepts of persistence of vision. The microcontroller used in the project is Atmega128p, however you could also use any other but it should have high number of input/output ports to avoid further complexity. A project which looks simple but is really tough to make due to mathematics involved. It can be improved by keeping the LED’s and motor in sync preferably using a wireless protocol.